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A theoretical formulation and corresponding numerical solutions are presented for micro-
scopic fluid flows in porous media with the domain sufficiently large to reproduce integral
Darcy scale effects. Pore space geometry and topology influence flow through media, but
the difficulty of observing the configurations of real pore spaces limits understanding of
their effects. A rigorous direct numerical simulation (DNS) of percolating flows is a formi-
dable task due to intricacies of internal boundaries of the pore space. Representing the
grain size distribution by means of repelling body forces in the equations governing fluid
motion greatly simplifies computational efforts. An accurate representation of pore-scale
geometry requires that within the solid the repelling forces attenuate flow to stagnation
in a short time compared to the characteristic time scale of the pore-scale flow. In the com-
putational model this is achieved by adopting an implicit immersed-boundary method
with the attenuation time scale smaller than the time step of an explicit fluid model. A ser-
ies of numerical simulations of the flow through randomly generated media of different
porosities show that computational experiments can be equivalent to physical experi-
ments with the added advantage of nearly complete observability. Besides obtaining mac-
roscopic measures of permeability and tortuosity, numerical experiments can shed light on
the effect of the pore space structure on bulk properties of Darcy scale flows.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Slow flow of an incompressible, viscous fluid through porous media is of interest to many areas of research and industry.
Historically, computational efforts have focused on diagnosing steady macroscopic flows through inhomogeneous aniso-
tropic media. Such flows are governed by stiff elliptic boundary value problems that result from imposing the mass-conti-
nuity constraint on the Darcy momentum flux with variable permeability; see [1,2] for examples. Regardless of their
theoretical and practical importance, such efforts cannot (by design) address the influence of pore space geometry and topol-
ogy on permeability – although the latter obviously depends on both. The actual permeability of a physical porous medium is
hard to estimate from direct measurements of the geometry and topology of its pore space, and more often variations on
Darcy’s classic experiment are used to estimate permeability as a bulk property of a sample volume. Early numerical mod-
eling of pore-scale flows tended to address the cumulative Stoke’s drag on periodic arrays of idealized obstacles (viz. perme-
ability of arrays [3]), and only recently advances in computational technology and in visualization of actual pore spaces have
enabled progress with pore-scale simulation of percolating flows [4]. While the leading trend still is to simulate pore-scale
transport with heavily reduced fluid equations, the harbingers of Navier–Stokes DNS [5–7] have already demonstrated the
potential of virtual experiments for complementing laboratory studies.
. All rights reserved.
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In [7] the authors used X-ray computed tomography to tetrahedralise a scanned pore space and to generate an unstruc-
tured mesh for, perhaps the first ever, sensu-stricto DNS of steady incompressible Navier–Stokes flows through a real pore
space. The results of numerical experiments were validated with the standard laboratory permeability test of a soil sample,
demonstrating the equivalence to physical experiments with the added advantage of nearly complete observability. In spite
of breaking the deadlock of ‘‘fundamental inability to describe the advection transport at the pore-scale” and demonstrating
that ‘‘simulation with the Navier–Stokes equations mirrors results from Darcy’s Law” [7], the technology involved still seems
beyond the reach of many research groups, and the computational effort appears formidable (10 h of the wall-clock time to
complete a simulation with � 1:5� 106 degrees of freedom). The latter is closely linked to the difficulties with representing
geometrically complex boundaries, recognized as an obstacle for successful application of computationally efficient grid
based methods [5].

In this paper we describe an alternative computational approach for simulating percolating flows with, in principle, arbi-
trary governing fluid equations in arbitrary pore spaces. Any virtual (computational) laboratory for pore-scale flow modeling
requires two key ingredients: a method for prescribing pore space; and a method for representing relevant elements of fluid
dynamics. As opposed to using natural specimens [7,8], which is usually limited to a small number of pore space samples
that are difficult to observe, in this paper we generate random pore spaces via the statistical topography [9]. The latter meth-
od is technically simple, and advantageous when multiple realizations of a pore spaces are required. We implement the
resulting porous media in the multi-scale computational fluid model EULAG – widely documented in the literature; see
[10] for a recent review and a comprehensive list of references. The crux of our computational approach is the immersed-
boundary (IMB) method – originated in the area of computational biomechanics [11,12] – that employs fictitious body forces
in the equations of motion to mimic the presence of solid structures and internal boundaries1; see [15] for a review. The par-
ticular technique adapted is a variant of feedback forcing [16], with implicit time discretization admitting rapid attenuation of
the flow to stagnation (within solid structures) in OðDtÞ time comparable to the time step Dt of the fluid model. The efficacy
of the IMB in EULAG has been verified by comparisons with solutions using boundary fitted coordinates and with wind tun-
nel data [17]. In spite of a broad range of documented IMB applications [18] – including flows past arrays of elemental
bodies, e.g. [17,19,20] – there seems to be no significant record of simulating flows in realistic random porous media as ad-
dressed in [7]. Compared to the finite-element boundary fitted unstructured mesh model of [7] the approach proposed here
is both simple and computationally undemanding – e.g. �10 min of wall-clock time on 64 processors of the IBM Power6 ma-
chine to complete a simulation with � 4:2� 106 degrees of freedom. Nevertheless, it offers an effective means for analyzing
flow through samples of simulated pore spaces. Besides mapping bulk properties like dependence of permeability on the
porosity of the media and material properties of the fluid exactly from the simulations, the approach facilitates a study of
the effect of pore space structure – given specified statistical details of pore space homogeneity and anisotropy, and topo-
logical properties like connectivity and grain size distributions – on bulk properties of Darcy scale flows.

The present paper is a pilot study on computational evaluation of pore scale flow in saturated and unsaturated porous
media. Its goal is to introduce and validate the methodology underlying our virtual laboratory for studying multi-scale flows
in porous media. With our emphasis on proof of concept – rather than on exhaustive study of pore space effects on macro-
scopic properties of porous media – the formulation of the pores resolving fluid model is discussed thoroughly in the next
section. Numerical results are presented in Section 3, where we first analyze one canonical experiment in some detail, and
then synthesize a series of simulations by giving sample results relating pore space properties to permeability.

2. Pores resolving fluid model

2.1. Theoretical formulation

The computational model EULAG accommodates a broad class of flows and underlying fluid equations, in a variety of do-
mains on scales from laboratory and wind tunnel, through terrestrial environments and climate, to stellar [10]. Furthermore,
EULAG is formulated in generalized time-dependent curvilinear coordinates to facilitate grid adaptivity to targeted flow fea-
tures and/or irregular evolving boundaries [21–24]. Here, however, we integrate basic incompressible Navier–Stokes equa-
tions on a Cartesian domain with the linear scale Oð10�2Þm, thus dispensing with many complexities of EULAG’s analytic
formalism. Focusing on gravity-driven flows of a homogeneous incompressible fluid (e.g. water) through a porous medium,
the adopted Navier–Stokes equations can be compactly written as
1 Con
r � v ¼ 0;
dv=dt ¼ �rp0 þ g0 þ mMv � av; ð1Þ
dd=dt ¼ v:
Here, d=dt ¼ @=@t þ v � r is the total time derivative, with v denoting the velocity vector. The primes refer to perturbations
with respect to static ambient atmospheric conditions characterized by a constant density qo and pressure po ¼ poðzÞ, so
p0 ¼ ðp� poÞ=q and g0 ¼ ð0;0;�gq0=qÞ, where q ¼ const� qo denotes the density of water and g is the gravitational accel-
eration; the kinematic viscosity of water is denoted as m. The last term on the right-hand-side (rhs) of the momentum
ceptually, this is in the spirit of statistical theories that treat the solid phase as an external force field constraining the fluid to the void space [13,14].
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equation in (1) is the aforementioned repelling (fictitious) body force of the IMB method, with a non-negative time scale
a�1ðxÞ and the corresponding inverse time scale aðxÞ that tend to vanish within the solid and fluid, respectively; its role
and interpretation will be discussed shortly. The last equation in system (1) is merely supplemental, with the goal to facil-
itate analysis of the results. Here, dðx; tÞ ¼ x� x0 is the Eulerian field of Lagrangian displacements of fluid particles with
their initial location x0 ¼ x, so dðx; t0Þ ¼ 0 everywhere.2

Relating the experimental Darcy’s law [27] – the proportionality of a macroscopic mass flux and adverse pressure gradi-
ent – to basic principles of hydrodynamics is one of the classical problems in the study of flows in porous media. Conse-
quently, the reproducibility of the law forms a key benchmark for microscopic theoretical/numerical models of
percolating flows. In heuristic terms, Darcy’s law relies on properties of a Poiseuille type flow within microscopic channels
of the media (Section 4.8 in [28]), or on the Stokes’ drag form of the effective resistive force of porous media on fluid parcels
(Sections 4.7 and 5.10.4 in [29]). Theoretical derivations typically assume Stokes’ incompressible creeping-flow equations –
characterized by the balance between the body forces (e.g. gravity) and the divergence of the Navier–Stokes stress tensor –
and proceed by homogenization of the resulting boundary value problem with no-slip conditions imposed at a random, mul-
tiply-connected fluid/solid interface [30–32]. The assumption of the Stokes’ regime requires the characteristic scale of the
pores r � m=u (here u denotes a characteristic flow velocity; cf. Section 20 in [33]) tantamount to microscopic Reynolds num-
ber Re ¼ ru=m� 1. With reasonable estimates of m ¼ Oð10�6Þ ms�2; r ¼ Oð10�3Þm and u ¼ Oð10�3Þ ms�1, this assumption is
already violated. In (1) we relax the creeping-flow assumption, and admit problems with a broad range of hydraulic conduc-
tivities depending upon the media permeability and viscosity of the fluid.

The mathematical form of the repelling body force on the rhs of the momentum equation in (1) is reminiscent of the
Stoke’s drag. However, there is no physical connection between the two, as the former is merely a mathematical prerequisite
of the numerical device circumventing the difficulty of imposing exact no-slip conditions along boundaries with complex
geometry and topology. Intuitively, setting aðxÞ � 0 within the fluid admits Navier–Stokes flows away from the solid bound-
aries, while requiring aðxÞ % 1within the solid assures v & 0 there. Further estimates of the IMB efficacy can be derived by
viewing the momentum equation in (1) as an abstract ODE along a flow trajectory
2 The
3 Var
dv=dt ¼ f � av; ð2Þ
where f combines all physical forces. Its general solution (see Section IX.9 in [34]) can be written as
v ¼ v0 exp �
Z t

t0

aðsÞds
� �

þ
Z t

t0

fðsÞ exp �
Z t

s
aðnÞdn

� �
ds; ð3Þ
where the integrals are meant along the path x ¼ x0 þ
R t

t0
v xðsÞð Þds, and v0 ¼ v xðt0Þð Þ; within the fluid, (3) reproduces the

formal path integral of the physical ODE _v ¼ f. Keeping in mind that the goal is to resolve microscopic flow, the integration
interval in (3) should be t � t0 P OðT Þ, with the microscopic characteristic time scale T ¼ maxðr=u; r2=mÞ accounting for both
inertia and viscosity dominated flows (viz., large and small Re). On the other hand, a physically meaningful representation of
the solid by means of the repelling forces demands
a�1 � OðT Þ 6 t � t0: ð4Þ
However, the accuracy and stability of numerical integrations of the governing problem in (1) necessarily require temporal
increments Dt � T , whereupon selecting a�1 ¼ OðDtÞ assures (4). Assuming (for simplicity of the argument) t � t0 ¼ T and
a�1 ¼ const, (3) results in
v ¼ v0e�aT þ fa�1ð1� e�aT Þ; ð5Þ
where f denotes mean value in the t � t0 integration interval. Taking a�1 ¼ Dt in (5) shows that within the solid the depar-
tures of flow velocity from stagnation are Dv ¼ OðDtÞ over the microscopic scale T , or Dv ¼ Oð10�1DtÞ over the Dt increment
of the numerical model. This generalizes the numerical analysis in appendix C of [17].

2.2. Numerical approximations

In EULAG all governing prognostic equations can be optionally integrated, on a regular computational grid,3 as either
Lagrangian evolution equations or Eulerian conservation laws [35,36]. Given that all calculations reported in this paper use
exclusively the Eulerian option in a Cartesian-framework, each prognostic equation in (1) is idealized as
@w
@t
þr � ðvwÞ ¼ F; ð6Þ
where w symbolizes the components of v or d, and F stands for the corresponding rhs. The governing system of the conser-
vation laws (6) is integrated numerically using a second-order-accurate, semi-implicit, non-oscillatory forward-in-time
(NFT) approach, whose theory, implementation and applications are broadly documented in [37–39] and references therein.
dðx; tÞ field should not be confused with particle tracking in either theoretical [13,14], experimental [25,26] or computational [5,6] models.
iability of physical mesh can be represented via continuous mappings [21–23].
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All prognostic dependent model variables are co-located – a choice important for the efficacy of the semi-implicit integrals
(cf. [17]) – so the resulting finite-difference approximations can be written compactly as
wnþ1
i ¼ Ai

~w;vnþ1=2
� �

þ 0:5DtF nþ1
i : ð7Þ
Here: wnþ1
i is the solution sought at the grid point ðtnþ1;xiÞ; ~wi � wn

i þ 0:5DtF n
i , with F ¼ F þOðDx2Þ symbolizing a centered

spatial discretization of F; vnþ1=2 is an OðDt2Þ estimate of the velocity at t þ 0:5Dt; and A denotes a fully second-order-accu-
rate two-time-level finite-volume NFT advection scheme. All calculations in this paper used the second-order-accurate
monotone MPDATA scheme; already well reviewed in the literature [37,39,40].

For inviscid dynamics, all prognostic equations in (1) are integrated with (7) using, effectively, the trapezoidal rule and
thus treating all forcings on the right-hand-side implicitly. Dissipative terms in the momentum equation are evaluated
explicitly to OðDtÞ, and are included in A. In technical terms, the definition of the auxiliary field ~v is expanded as
~v � vn þ 0:5Dt F n

inv þ 2F n
vis

� �
, while accounting only for the inviscid forcing F inv in F nþ1 on the rhs of (7). The explicit

first-order evaluation of the dissipative forcing improves the efficacy of the calculations; however, when required, it can
be extended to a trapezoidal integration by means of an outer iteration scheme [39].

Eq. (7) represents a system implicit with respect to pressure and all velocity components, because all principal forcing
terms are assumed to be unknown at nþ 1. For the velocity vector v, (7) is compactly written as
vi ¼ ~vi � 0:5Dt rp0 � g0 þ avð Þi; ð8Þ
which can be readily written in the closed form
vi ¼ v̂i � 0:5Dtð1þ 0:5DtaiÞ�1rip0; ð9Þ
where the explicit part v̂ ¼ ð~v þ 0:5Dtg0Þð1þ 0:5DtaÞ�1. Requiring the solution (9) to satisfy the mass-continuity constraint
in (1) – discretized consistently with the divergence operator implied by A – leads to the discrete boundary value problem
for pressure
r � v̂ � 0:5Dtð1þ DtaÞ�1rp0
h in o

i
¼ 0: ð10Þ
The boundary conditions for rp0 � n are implied by the boundary conditions imposed on vnþ1 � n [21,22], subject to the inte-
grability condition

H
@Xvnþ1 � n d2x ¼ 0; here n denotes the outward unit normal to the boundary @X of the integration do-

main X. The resulting elliptic problem is solved using a preconditioned nonsymmetric Krylov-subspace solver [41,42].
Given the updated pressure, the updated velocity components are calculated from (9). Subsequently, the Lagrangian dis-
placements d are updated according to (7).

Integrating the governing PDEs (1) as described has two important benefits relevant to this study. First, the implicit for-
mulation of the model algorithm (7) evinces the optimal repelling time scale a�1 � 0:5Dt (Appendix C in [17]), which auto-
matically ensures that (4) is satisfied in calculations. Second, the nonlinear transport algorithm A suppresses spurious
oscillations (notorious in linear discretizations) at sharp gradients of advected fields in vicinity of the fluid–solid interface.
This not only improves the conditioning of the explicit part of the elliptic problem (and thus the solver’s convergence), but it
also facilitates simulations with substantially larger Reynolds number than for creeping-flow motions. Notably, the difficul-
ties with representing geometrically complex boundaries – a weakness of computationally efficient grid based methods [5] –
can be mitigated, given methods suitable for solving transport and elliptic problems with discontinuous dependent variables
and random coefficients.

2.3. Virtual porous media

With the problem formulation and the method of its solution discussed in Sections 2.1 and 2.2, respectively, there appears
to be no fundamental restriction on specifying the structure of virtual porous media admitted in our model. A realistic pore
space can be designed based on X-ray computed tomography [7] as well as using a range of statistical methods [9]. Regard-
less of the structure of the media, the time scale a�1ðxÞ set to two distinct values in fluid and solid uniquely characterizes a
realization of the media, while the governing equations admit a range of solutions from a free fall to global stagnation. To
generate the pore space on a discrete model grid, we adopt an approach particularly undemanding from the perspective
of massively-parallel self-contained numerical codes – albeit relating pore space properties to two basic parameters: the
form of the convolution kernel and the level of the characteristic filter. Given a computational domain of Nx � Ny � Nz grid
points i ¼ ði; j; kÞ, a white-noise field fi with values in the ½�0:5;0:5	 range is specified with a random-number generator.
Next, with the aim to control the connectivity of the pore space and the size of individual pores/grains relative to grid res-
olution, the random field fi is low-pass filtered using some m consecutive applications of the tensor product
f flt ¼ f fltx 
 f flty 
 f fltz. Each alternate-direction application of the one-dimensional filter f fltx; f flty or f fltz employs the trapezoi-
dal rule integral over two adjacent grid boxes – e.g. f fltx

i ¼ 0:25ðfiþ1;j;k þ 2f i;j;k þ fi�1;j;kÞ in the direction of x, with the amplitude
response f̂ fltxðkÞ ¼ f̂ ðkÞ0:5ð1þ cosðkDxÞÞ, where k is the wave-number of the Fourier mode f̂ ðkÞeikx on the grid. Such filtered
field is then renormalized to assure that its values are in the ½�0:5;0:5	 range, and employed to generate a characteristic
function of the pore space





2.4. Design of experiments

A series of simulations is conducted for gravitationally driven flows in virtual porous media with different permeabilities
corresponding to different values of level-set constant c in the definition of characteristic function K. The initial flow is
stagnant and all calculation are carried past a steady state, except for control free fall runs. The lateral boundaries are imper-
meable, whereas periodic boundaries are assumed in the vertical. The Cartesian model domain Lx � Ly � Lz ¼
1:27 � 10�2 � 1:27 � 10�2 � 2:55 � 10�2 m3 is resolved with Nx � Ny � Nz ¼ 128� 128� 256 points of the regular grid with uni-
form intervals Dx ¼ Dy ¼ Dz ¼ 10�4 m. All calculations span total time T ¼ t � t0 ¼ 5 � 10�2 s with the increment
Dt ¼ 5 � 10�5 s.

The remaining simulation parameters are as follows. In (1), the reduced gravity g0 ¼ 0:999 g and the kinematic viscosity of
water m ¼ 10�6 m2 s�1 are assumed; and the inverse time scale of the repelling force a ¼ 0:4 � 105 within the solid (recall that
a � 0 in voids). Note that the characteristic time scales of the gravitational and viscous forces at the grid size –
ð2Dz=g0Þ1=2 ¼ 4:5 � 10�3 s and Dz2=m ¼ 10�2 s, respectively – are two and three orders of magnitude larger than the repelling
time scale a�1 ¼ 0:5Dt ¼ 2:5 � 10�5 s. The total simulation time T is comparable to the time ð2Lz=g0Þ1=2 ¼ 7 � 10�2 s of the free
fall over the domain height Lz in the absence of solid grains (viz. a � 0 everywhere). On the other hand, T is also comparable
to the time scale of viscous processes at the pore-scale. Thus, in all simulations, in which steady state solutions are attainable
in a fraction of T, the results must be governed by the balance between the gravity and the grains’ reaction force at the fluid/
solid interface, with dissipation playing a minor role. Indeed this is verified by auxiliary inviscid calculations with m � 0,
exhibiting the same macroscopic behavior as in viscous runs (Section 3.2).

3. Numerical results

3.1. Reference simulation

The entire series of simulations specified in the preceding section aims at the mapping of macroscopic flow characteristics
on properties of the porous media and vice versa. Before attempting such a synthesis of the series in next section, here we
summarize the results of one selected experiment for the purpose of illustration, completeness and further reference.

The characteristic pore space function, Fig. 2, assumes m ¼ 4 and c ¼ 0 in (11). The corresponding histogram, Fig. 3, of the
vertical size of pores (normalized by Dz) documents a skewed distribution with the most frequent size at 2:6Dz, roughly
twice larger mean 6:3Dz, and the standard deviation 4:7Dz. To convey the skewed character of the distribution, later in
the paper we shall refer to the left and right standard deviations – evaluated using the respective data to the left and right
of the mean – with the sum of their squares equal the square of the standard deviation. For the case at hand, the left and right
standard deviations are 2:7Dz and 3:8Dz, respectively.

Fig. 4 shows the histories of the domain averaged vertical velocity and total speed ðv � vÞ1=2. After t ¼ 3 � 10�2 s the aver-
aged flow is essentially stationary, with mean vertical velocity hwi � �0:02 ms�1 roughly twice larger than each horizontal
component (assuming flow equipartition in each horizontal direction). Based on the value of hwi and the characteristic size
of the pore space r ¼ OðDzÞ, the miscroscopic Reynolds number Re ¼ rhwi=m � 2, clearly violating the creeping motion
assumption (Re� 1), and thus motivating a posteriori the use of the Navier–Stokes equations in (1).

Fig. 5 complements the velocity histories in Fig. 4 with the histories of the domain averaged Lagrangian displacements.
The solid line shows jdzj ¼ hd2

z i
1=2, with dz denoting the vertical component of the displacement vector d. Long and short

dashes show, respectively, the value of the total displacement jdj ¼ hd2i1=2 and a measure of its standard deviation
rðjdjÞ ¼ hðd2 � hd2iÞ2i1=4. All displacement values are normalized by the vertical domain size Lz. Consistent with the velocity
histories, after t ¼ 3 � 10�2 s the displacements grow linearly in time. The difference between the total and the vertical mean



Fig. 3. Pore size frequency distribution, with the pore size normalized by the grid interval.

Fig. 4. Histories of the domain averaged vertical velocity hwi (dashed line) and total speed jvj ¼ h
ffiffiffiffiffiffi
v2
p
i (solid line).
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displacements are minuscule, indicating that the microscopic flow is predominantly vertical. The large value of the standard
deviation measure (compared to the mean), indicates that the fluid is mostly blocked, so the flow must percolate throughout
a relatively small number of long channels. This is illustrated by the display of instantaneous vertical velocity in the central
xz plane in Fig. 6 that evinces only localized patches of the downward flow.

Fig. 7 shows the scatter plot of permeability j in function of the model vertical coordinate, evaluated in voids as a ratio of
the horizontally-averaged vertical velocity and pressure gradient
jðzÞ ¼ �mw=q�1@p0=@z; ð13Þ

where the overline indicates horizontal average and p0 ¼ p� po þ g0qz; see (1) and the accompanying discussion. For com-
pleteness, Fig. 7 also shows the average value hji ¼ 0:97 � 10�8 m2 (solid line) encompassed by the standard deviation rðjÞ
(dashed lines) and the least-square estimate j ¼ 0:98 � 10�8 m2 (long-dashed line). The latter was obtained by minimizing

with respect to j and c the functional Iðj; cÞ ¼
P
�jq�1@p0=@zþ c � mw
� �2

, where the summation extends over all z-levels

of the model. The proximity of the two estimates implies that the in voids fluctuations of wðzÞ and @p0=@zðzÞ are small com-
pared to their vertically-averaged values, which is consistent with the data scatter in Fig. 7 roughly within 10% of the mean
value. Consequently, the model predicted hji is a representative measure of the virtual porous medium shown in Fig. 2; its
value corresponds to pervious materials like clean gravel, cf. Table 5.5.1 in [29].

3.2. Pore space effects on permeability

Here, we illustrate the potential of the proposed approach for studies of the effects that variations in pore space geometry
and topology (e.g. connectivity, tortuosity, and porosity) have on macroscopic properties like permeability. In the following,



Fig. 5. Histories of the domain averaged Lagrangian displacements, normalized by the vertical domain size Lz . Solid line marks the vertical component, long
dashes the total, and short dashes mark the standard deviation of the mean total displacement (see text for the definitions).

Fig. 6. Instantaneous vertical velocity in the central xz plane at t ¼ t0 þ 5 � 10�2; contours in the range ½�18:75 � 10�2;�Dw	ms�1 are shown with the
interval Dw ¼ 3:125 � 10�2 ms�1.
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we synthesize two series of simulations. The first series consists of simulations like the reference simulation discussed in
Section 3.1, but performed for a range of the level-set constant c 2 ½�0:15;0:30	 defining the discrete characteristic function
of the pore space Ki in (11). The second series employs a much broader filter, m ¼ 16, in the construction of the pore space;



Fig. 7. Permeability; scatter plot together with the average value (solid line) encompassed by the standard deviation (short-dashed lines) and the least-
square estimate (long-dashed line).
for illustration, compare Figs. 8 and 9 with Figs. 2 and 3. This second series complements the first one with less numerous
calculations for c 2 ½�0:15;0:15	.

Figs. 10–12 summarize geometric properties of media used in the two series of simulations. Fig. 10 delineates the pore
size frequency distributions in function of the level c by depicting the mean (solid lines) encompassed by the left and right
standard deviations (dotted-dashed lines underneath and above the mean, respectively). The data from the series with the
narrower filter m ¼ 4 are marked with circles, while crosses mark the m ¼ 16 runs. An apparent effect of increasing the num-
ber of filter iterations (viz. the filter width) is admitting larger pores at the same c, and thus increasing the effective model
resolution. The corresponding values of porosity (the ratio of the void and total volumes, Fig. 11) span a range of plausible
scenarios – from a solid rock at a lower end to a predominantly vacuous space surrounding a few embedded grains of solid;
cf. Table 2.5.1 in [29]. Notably, Figs. 10 and 11 illustrate that media with statistically finer pores can have larger cumulative
porosity.

Fig. 12 shows the domain averaged total Lagrangian displacements jdj corresponding to the final simulation time
t ¼ t0 þ T; cf. Fig. 5. Here, these normalized displacements are adopted as a measure of the media tortuosity factor; cf. Sec-
tion 4.8.1 in [29]. Qualitatively, Figs. 12, 11 and 10 reflect that media tortuosity and porosity grow in concert with increasing
size of pores (viz. with c), which is an intuitively expected result. Quantitatively, Fig. 12 reveals distinct regimes of simulated
flows and aids the interpretation of numerical results. The upper limit of the tortuosity factor at c ¼ 0:3 is 0.48. This value
corresponds to the dimensional displacement dz ¼ 0:48Lz ¼ 0:5 g T2; that is, the distance of the free fall over the total sim-
ulated time, anticipated at porosities approaching 100%. In the lower limit at c ¼ �0:15, the value 0:48 � 10�3 corresponds to
the dimensional distance dz ¼ 12:24 � 10�4 m ¼ 12:24Dz ¼ g0a�1 T; that is, the distance swept by the steady flow governed
predominantly by the balance of gravity and the attenuating force�g0 � aw ¼ 0 in (1). Indeed, the results equivalent to those
in Fig. 4 (not shown) document that the flow becomes essentially steady within the first time step of the model. Both in the
free fall and the balanced regime the flows are essentially vertical, Fig. 13, and neither regime corresponds to pore-resolving
simulations of Darcy flows. We shall return to the discussion of these two regimes shortly.
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Fig. 8. Iso-surface of the characteristic pore space function in the simulation with m ¼ 16 andc¼0; cf. Fig. 2.



Fig. 10. Pore size statistics in function of c; solid lines are for means, and dot-dashed lines for left and right standard deviations. Circles and crosses
correspond to m ¼ 4 and m ¼ 16 filter iterations.

Fig. 9. Pore size frequency distribution, for m ¼ 16 and c ¼ 0; cf. Fig. 3.

Fig. 11. Porosity in function of c; circles and crosses correspond to m ¼ 4 and m ¼ 16 filter iterations.
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With the approach adopted for generating virtual porous media (Section 2.3), at a given model resolution, the pore-
resolving simulations are realized within a narrow region of the level-set constant �0:05 K cK 0:05. This is substantiated
by the dependence of the domain averaged permeability hji on c in Fig. 14. A characteristic feature revealed by the figure



Fig. 12. Tortuosity measure jdj at the final simulation time in function of c; cf. Fig. 5.

Fig. 13. The relative tortuosity measure jdzj=jdj in function of c, evaluated at the final simulated time.

Fig. 14. Permeability hjiðcÞ, evaluated at the final simulated time (cf. Fig. 7); asterisks are for m ¼ 4 in (11) and m ¼ 0 in (1).
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is an abrupt increase of the permeability growth rate for c P �0:05, tapered subsequently as c% 0:05. This feature is con-
comitant with the increase of the tortuosity and of its horizontal counterpart, in particular. In contrast, the growth of the
media porosity is more gradual. Altogether, this is symptomatic of the critical behavior of the hydraulic conductivity of
the system near the percolation treshold c � �0:05 [43]. Insofar as the numerical values of permeability are concerned,



Fig. 15. Scatter plot of horizontally-averaged vertical component of pressure gradient force in voids �q�1@p0=@z versus horizontally-averaged vertical
velocity in voids w, for m ¼ 4 and c ¼ �0:15; the SI units are used.

3132 P.K. Smolarkiewicz, C. Larrabee Winter / Journal of Computational Physics 229 (2010) 3121–3133
for �0:05 K cK 0:05 they all fall in the range of pervious materials, Table 5.5.1 in [29]. This does not imply the limitation of
the approach to problems with high permeability, but merely reflects the particularity of the adopted experimental setup
(Section 2.4). Either increasing the model resolution (both spatial and temporal) while keeping a realistically small size of
pores, or increasing the viscosity would resolve flows with low permeability. Arguably, for cK � 0:15 the simulated flows
fall in the transitional range of Re K 1, where viscous effects are relatively small and the inertial forces dominate (Fig. 5.3.2 in
[29]). This is substantiated in Fig. 14 with the results of three additional control experiments at m ¼ 4 and c ¼ �0:15;�0:10
and 0.10, for which the viscosity m � 0 has been employed in the numerical integration of (1), but retained at the same value
as for all other experiments (m ¼ 10�6 ms�2) while evaluating the permeability in (13).

Outside the range of �0:05 K cK 0:05 the calculations are still physically meaningful, but they represent different com-
putational regimes than the targeted DNS of porous media flows. On the upper end, the calculations enter seamlessly the
realm of large-eddy simulation (LES) of flows past complex bodies [17,24], thanks the implicit LES property of the employed
non-oscillatory numerics [44,45]. More intriguing, on the lower end the calculations still capture some microscopic perco-
lating flows. Given the balance of gravity and the repelling force (�g0 � aw ¼ 0) in solid at small porosities, the domain aver-
aged flow and the residual Lagrangian displacements are dominated by the truncation error estimated with (5). However,
with 4:1 � 106 grid boxes even porosity as small as 0.1% leaves 4:1 � 103 void elements, within which the integration of the
Navier–Stokes’ equations proceeds. Fig. 15 shows the scatter plot of �q�1@p0=@z versus w of the horizontally averaged values
in voids, and it substantiates the significance of the resulting mean permeability 0:38 � 10�9 m2 (or 0:37 � 10�9 m2 when eval-
uated by the least-square fit). On the other hand, the lower end results reveal a complementary perspective. Because the
balanced residual flow (hwi ¼ 0:48 � 10�3 m s�1) dominates 99% of the model domain, the reduced geopotential g0z becomes
the dominant part of the pressure gradient force on the macro-scale. This implies the residual macro-scale permeability
jo ¼ m=a with numerical value 0:25 � 10�10 m2, and opens an entirely different avenue for the use of the repelling forces
in modelling Darcy flows. Rather than simulating the porous media per se, the approach can be employed to model effective
conductivity and permeability in the spirit of subgrid-scale parameterizations. Furthermore, both perspectives can be
blended, possibly leading to seamless multi-scale modeling of natural flows in complex heterogeneous media.
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